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Abstract: The present paper deals with the comparison and fusion of odometry and absolute
Global Positioning System (GPS) with complementary linear filtering for the navigation
of an outdoor robot. This system was implemented on a home made mobile robot named
Rover Autonomous Navigation Tool (R-ANT). Experimental results are presented, which
alow to compare the two original measurements as well as the filtered output, clearly
showing the advantages and disadvantages of each of the threelocalization systems.Copyright
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1. INTRODUCTION

Location is basic to navigation. So that amobile robot
may autonomously navigate, it needsto know its exact
position and orientation. Robot localization is there-
fore akey issue in providing autonomous capabilities
to amobile robot. The different methods devel oped to
solve this problem can beincluded in one of two major
categories: relative and absolute positioning.

Relative positioning is usualy based on odometry, a
simple, inexpensive and easy to implement real-time
method, where the vehicle position is determined by
geometric interpolation according to the angular dis-
placement of the vehicle wheels. This method pro-
vides only incremental positioning and is sensitive
to error sources that fit into one of the two cate-
gories (Borenstein and Feng 1996), systematic (un-
equal wheel diameters, misalignment of wheels, etc.)
and nonsystematic errors (wheel slippage, travel over
uneven floors, etc.), having therefore limited accu-
racy especiadly as the distance travelled increases.
(Borenstein and Feng 1996) and (Goel et al. 1999)
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present calibration procedures to compensate some of
the systematic errors, namely, unequal wheel diame-
ters and uncertainty about the effective wheel base.

Absolute positioning allows a mobile robot to deter-
mine its location and velocity independently of previ-
ous measurements, i.e., the navigation is made with re-
spect to a coordinate frame based on the environment.
In this case, the accumulation of errors does not occur,
but the presence of landmarks is needed. The Global
Positioning System (GPS) can consistently provide
accurate position, velocity and timing information in
good satellite signal tracking environments. The main
factor limiting the use of GPS is the reguirement for
line-of-sight between the receiver antenna and the
satellites, which cannot always be met.

Absolute and relative localization are complemen-
tary. Generaly, absolute systems do not provide lo-
calization data at a high frequency, wheress rela-
tive systems can. Moreover, if an absolute system
does not detect enough landmarks for its localization
process, relative techniques can calculate estimates
during limited periods of time. Combinations of the
two approaches can yield very accurate positioning
systems.The most common formalism used to asso-
ciate these two kinds of systems is the Kalman filter



Fig. 1. The R-ANT platform.

(Moutinho and Azinheira 2003), where the observa-
tions relating to the motion of the robot, as well as a
dynamic model derived from some physical laws are
required. However, this model is amost never avail-
able at alevel to satisfy the basic reliability require-
ments. In this way, a simple solution was tested and
compared with odometry and GPS alone: complemen-
tary linear filtering of the odometry and GPS measure-
ments and where no physical modelling is called for.
In (Baerveldt and Klang 1997) the same was done for
attitude estimation for an autonomous helicopter.

The present paper deals with the comparison and fu-
sion of odometry and absolute GPS with comple-
mentary linear filtering for the navigation of a small
outdoor robot, where in (Moutinho and Azinheira
2003) fusion results were presented using an extended
Kaman filter.

In section 2 the robot model is presented. Section
3 describes the design of the complementary linear
filter. The experimental setup and the results obtained
are presented in section 4 and section 5 draws some
concluding remarks.

2. ROBOT ODOMETRY MODEL

TheR-ANT platform used for the experimentshhastwo
opposed drive wheels, each coupled with a dc motor
and an encoder, and one fly wheel for equilibrium,
as represented in figure 1. The R-ANT platform has
two levels: the lower at the front for the heavier
components (motors and batteries) and the higher at
therear for the microprocessor and acquisition/control
boards. This way, supporting less weight alows the
fly wheel to move more freely, having therefore less
interference with the vehicle movement.

This mobile robot has been mostly used for indoor
navigation studies but in the present paper it is used
asatest platform for outdoor navigation. The very low
speed of thisrobot (with amaximum of 10 cm/s) isad-
equate to reduce dippage and yield a better odometry
estimate but is quite difficult to be tracked by a stan-
dard GPS receiver, which would be expecting a higher
dynamics or, on the other hand, a static position.

2.1 Modeling Odometry

The two front wheels are equipped with encoders. At
each sampling period, AT, the signed integration of
the encoder pulses provides an estimate of angular
displacement, corresponding to the Ad! and Ad" dis-
tances travelled during that period by the left and right
wheels respectively. The wheels speed measured for
each instant & is given by

Ady"
AT

V= @)

The corresponding trandation (As) and rotation (A8),
measured with respect to the mid-point of the axle, are
given by

AVE+ AV
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where b is the distance between the two driving
wheels.

In a two-dimensional space and assuming linear dis-
placement at each sampling time, the location of the
R-ANT at step k& can be represented by

Asp = AT @)

Al = AT
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. Af
Yk ~ Yk—1 + Aspsin(@r_1 + Tk) )
O ~ 01 + Ay, (6)

where z and y denote the position of the center of
the axle in a Cartesian ground frame, and 4 is the
angle between the vehicle longitudinal axis and the z
axis. For the experiments reported here, the reference
ground frame is chosen in such a way that the robot
starts at the origin and is initially aligned with the y
direction.

According to (Wang 1988), with the added assumption
of acircular path, the second part of equations (4) and
(5) should be multiplied by the adjustment factor in
equation (7).

sin(A6y/2)

A6y /2 U

faj =

In our case this factor does not bring any change
because the sampling time (0.25s) is too small when
compared with the angular speed of the vehicle.

3. FILTER DESIGN

Position, orientation and velocity measurements of the
mobile robot R-ANT were obtained by odometry and
GPS. The goalpoint now isto combine all theinforma-
tion from these redundant measurements of the same
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Fig. 2. Conceptual complementary filter for combin-
ing odometry and GPS signals.

signals in such a way as to minimize the instrumen-
tation errors. A method of filtering the noise without
distorting the signal is complementary filter (Brown
and Hwang 1997). For instance, consider the robot has
angular velocity  and one wants to know its exact
orientation §. GPS, an absolute positioning system,
provides at each moment orientation values with high-
frequency noise, while odometry, a dead-reckoning
positioning system, provides noisy orientation values
by integrating at each moment noisy angular velocity.
From the block diagram in figure 2, the Laplace trans-
form of the output s(¢) may be written as

S(s) = 0(s) +e(s)[1 = G(s)] + v(s)G(s) (8)

where v and e are respectively noise inputs on GPS
position and odometry velocity measurements.

Clearly, the signa term S(s) is not affected by the
choice of G(s) in any way. On the other hand, the
two noise inputs are modified by the complementary
transfer functions [1 — G(s)] and G(s). Because v
is predominantly high-frequency noise and ¢ low-
frequency, choosing G(s) to be a low-pass filter will
automatically attenuate v as well as e. A first order
low-pass filter is of the form

1

G =171

)

It is now necessary to adjust the time constant I" to
minimize the effects of the noise sources v and ¢, as
well as define the order of thefilter.

An approximate model for the measurement system
with the two position sensors will now be made. The
relation between the angular velocity 8 of the robot
and the voltage U sent to the motorsis given by

0(jw) k

U(jw) 1 + Tjw (10)

where k and T are the gain and time constant of the
system respectively. The orientation is obtained by
integration of the angular velocity:

O(jw) 1 k

= — 11
U(jw) Jwl+Tjw (D)

The measurements 6, and 6, provided by odometry
and GPS respectively are
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Fig. 4. Relation between the norms of the power
spectral densities of 6, and §,.

Bo(jw) = jiww(m +a) (12)
8, (jw) = —g(jjf) +b (13)

where ¢ and b are the RMS values of the velocity &
and position v noises respectively. Considering U to
be an unity impulse and substituting equation (10) in
equations (12) and (13), the relation between 6, and
6, is

0,(jw) k+a+aTljw

= 14
0,(jw)  k+ bjw + bTj%w? (14)

The norms of the power spectral densities of 6, and
6, are represented in figure 3 and figure 4 shows the
ratio between them. As can be seen in both, the best
filter frequency is around 0.25 rad/s, for until then
both sensors present almost the same measurements.
It is for higher frequencies that the orientation from
odometry and GPS significantly differ. A third-order
low-pass filter with triple pole was chosen so that the
noise was rapidly cutoff. Equation (15) now presents
the correct form of G(s) shownin figure 2.
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Fig. 5. Waypoints for test trajectories.
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4. EXPERIMENTAL SETUP AND RESULTS

The above presented R-ANT robot was taken to an
outdoor environment, on a parking place, mostly hor-
izontal but with a ground surface presenting some
irregularitieswhich did not allow the robot to naturally
proceed in straight lines and introduced some wander-
ing around the planned line. The robot was equipped
withalL1-L.2 OEM3 10 channel Novatel GPS receiver
operating for absolute position and velocity measure-
ments, without any filtering. The robot was driven
manually along different test trajectories in open loop,
and the measurements from both odometry and the
GPS receiver were logged on-board the mobile robot
at a 4Hz sampling rate, for posterior comparison and
fusion.

From the various trgjectories used during the experi-
ments, three illustrative examples are presented here,
which show the respective advantages and drawbacks
of the two navigation algorithms and of the compro-
mise allowed by a complementary filtering fusion. In
all the cases, the pretended trajectories were composed
of straight segments between waypoints easily identi-
fied on the parking ground and according to figure 5.

4.1 Rectangle path

The first selected example is a rectangular path, ac-
cording to waypoints ABCDAE. The raw measure-
ments are presented in figure 6, with the Cartesian co-
ordinates and the orientation obtained from odometry
and GPS. The first characteristic to be mentioned is
the noisy signals given by the GPS receiver, with a
random component around 1.7 m RM S on the position
and 10 to 100 deg on the angle. This badly orientation
estimate is due to the very low speed of the vehicle,
which compared to the position error turnsit difficult
to estimate, despite a fair mean value, namely if it is
compared with the odometry output.
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Fig. 6. Rectangle odometry (above) and GPS (below)
measurements of position (left), with X in solid
and Y in dashed, and orientation (right).
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Fig. 7. Rectangle XY trajectory for odometry (left)
and GPS (right).

The measured tragjectories are presented in figure 7,
showing here again the piecewise curve given by the
odometry and noisy scattering of the GPS position.
The data are however consistent one with the other,
except for a small drift in the final of the odometry
path, from A to E, with a small offset error in the x
direction, and an GPS extra noise at the beginning.

The results obtained from the complementary filter
output are presented in figure 8, with the equivalent
curves. The trade-off between the raw measurements
is clear, with some noise coming from the GPS data,
but with the final drift corrected.

4.2 Sraight line path

The next example shows that also the complementary
linear filter hasits own drawbacks.

The path to be followed corresponds to the waypoints
sequence ABGBABGBA. Raw data are shown in fig-
ure 9 and corresponding trgjectoriesin figure 10. Here
again it is possible to see the high-frequency noise
in the GPS signal as well as the odometry drift. The
output of the complementary filter in figure 11 shows
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Fig. 8. Coordinates and orientation (left) and esti-
mated path (right) output from complementary

filter fusion.
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Fig. 9. Straight line odometry (above) and GPS (be-
low) measurements of position (left) and orienta-
tion (right).
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Fig. 10. Straight line XY trgjectory for odometry (left)
and GPS (right).

that when the GPS signal rambles away from the real
trgjectory, the complementary filter does not exclude
these values for they are not in the high-frequency
region, producing therefore an erroneous trajectory.
Such cases must obviously be anticipated, taking into

Xy [m]

0 200 400 600 800 1000
time [s] T
ES

600
400 L\M/\ 5F

0 200 400 600 800 1000 24 -2 0 2 4 6
time [s] x[m]

Fig. 11. Coordinates and orientation (left) and esti-
mated path (right) output from complementary

filter fusion.
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Fig. 12. Triangle odometry (above) and GPS (below)
measurements of position (left) and orientation

(right).
account the statistic and status data also available as
GPS outpuits.

4.3 Triangular Path

The last example is probably more the example of a
typical odometry drift (one can seein figure 13 that the
trajectory given by odometry exhibits a heading error
and is deviating from the FABA actual tragectory),
which afusion system is expected to correct with the
GPS absolute measurements. The path to be followed
corresponds to the waypoints sequence ABFABA.

The resulting raw data are shown in figure 12. They
are qualitatively very similar to the previous ones. But
the trajectories estimated in figure 13 are here very
different and clearly exhibit a drift in the odometry
estimation, namely for the last part of the trajectory
(ABA).

The output of the complementary filter, presented in
figure 14, here again presents a compromise result,
with some noise from GPS but with a fairly corrected
drift of the ABA part of the trajectory (it must be
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Fig. 13. Triangle XY trajectory for odometry (left) and
GPS (right).
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stressed that, as mentioned above, the robot piloting
was not perfect and the segment following was indeed
approximate).

In figure 15, comparison resultsincluding the ones ob-
tained in (Moutinho and Azinheira 2003) by Kalman
filtering, are shown.

5. CONCLUSION

The present paper introduced a feasible solution for
the navigation of an outdoor autonomous mobile
robot. Taking advantage of the complementary char-
acteristics from the two sensor systems, the technique
is based on the use of a complementary filter to fuse
the data from the vehicle odometry and the raw po-
sition and velocity measurements output from a GPS
receiver.

Experimental results are presented, which alow to
comparethetwo original measurements, clearly show-
ing the advantages and disadvantages of odometry or
GPS alone, aswell as of the filtered result. The output
of the complementary filter fusion is in agreement
with the searched compromise, canceling the odome-
try drift, to the expense of alittle noise in the position
estimate, as long as the GPS signal does not ramble.
Again we emphasize that this method does not take
into account the dynamic of the system.

After this comparison and validation study, next stepis
obviously to implement the fusion algorithm, closethe
loop and verify the correct path tracking of the mobile
robot.
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