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Abstract: In this paper the Differential Evolution algorithm is deployed to the robotic path 
planning optimization problem for autonomous mobile vehicles. At this stage, the 
simulations consider the robot world with level surfaces and static obstacles , in which the 
optimization is performed off-line. The global objective is to evaluate the differential 
evolutionary algorithm in solving path planning problems, by finding the shortest path 
between start and goal points. Results obtained for three case studies with static circular 
and polygonal obstacles are presented.  
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1. INTRODUCTION 

 
One of the robotics main research field is the control 
algorithms development which allows robot mobility 
in a environment surrounded by obstacles. In this 
context, the path planning problem plays an 
important role by providing trajectories to avoid 
obstacles. There are several well known methods of 
path planning. Its choice depends on the comple xity 
and quality of the world where the vehicle will move, 
as well as the vehicle’s qualities. There are some 
criteria to evaluate the planning, such as path length, 
time spent, obstacle distance or the complexity and 
smoothness of the path. 
 
The relevance of applying efficient optimization 
algorithms to solve trajectory optimization problems 
is unquestionable. This is the case of evolutionary 
inspired algorithms, particularly the popular genetic 
algorithms (Goldberg, 1989; Michalewicz, 1992). 
One more recently introduced algorithm is the 
Differential Evolution proposed by Price and Storn 
(1995) which provides good results in the context of 
function optimization (Storn, 1996). 
 
This paper describes the off-line optimization of 
mobile robots trajectories using the Differential 
Evolution Algorithm, considering a world with level 
surfaces and obstacles represented by round and 
polygonal shapes. The path is  formed by strait line 
segments. The overall objective of the expected work 

is to acess the Differential Evolution algorithm in the 
context of robotic path planning optimization using 
evolutionary inspired techniques.  The optimization 
objective is to achieve the shortest path, between two 
points, avoiding any obstacle in the way. 
 
The rest of this paper is organized as follows in 
section two an introduction to the Differential 
Algorithm is provided. Section three describes the 
off-line path planning problem considered. In section 
four simulation results are presented and finally in 
section five some conclusions are drawn.   

 
 

2. DIFFERENTIAL EVOLUTION 
 

The Differential Evolution (DE) algorithm was 
originally developed by Price and Storn (1995). The 
solution of this algorithm, to address the path 
planning problem, was based upon its efficiency, 
effectiveness and robustness in the optimization of 
functions (Storn, 1996). The DE can be easily 
implemented to solve several types of optimization 
problems , such as  path planning. 
 
Assuming that a vector x

r
 represented by (1) 

represents a candidate solution to the path 
optimization problem, in which t represents the 
current evolutionary iteration, a new solution vector  

can be evaluated from the previous vector 
by using equation (2), with  (3), representing an 
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incremental vector. 
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Considering a set pop of potential solutions with size 
m, represented by (4), known as population (2) can 
be rewritten as (5) with d representing the dimension 
index.   
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A trial vector  is generated in each 
iteration for each population member using (6) and 
the increment δ  is evaluated using (7). In these 
expressions
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 are vectors selected 

randomly from the population set pop, in each 

iteration, and +∈ RF  is a constant defined prior to 
optimization.  
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The trial vector obtained with (6) and (7) is then 
crossed with the current population element 

i
x

r
  

accordingly to a crossover scheme, binomial or 
exponential (Storn and Price, 1995), with a pre-
defined probability defined by [ ]1,0∈CR  resulting in 
a new vector cix

r
 (8). If the value returned by the 

objective function f for the crossed trial vector is 
better or equal than the value obtained for the current 
vector, the latest is replaced by the former. This is 
represented by (9) for a minimization problem.  
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In Figure 1 a pseudo-code is shown that can be used 
to implement the DE algorithm, in which comments 
are included between brackets. 

 

 
 
Fig. 1. A Pseudo-code for the DE algorithm.  
 
The different strategies proposed for this algorithm 
are, basically, very similar, differing in the evaluation 
of the nRvx ∈

r  vector. Price and Storn (1995) 

proposed ten different options that can be classified 
using the notation DE/X/Y/Z, where: 
 
- X: represents the methodology used to select vector 
r1, which can be random selected (rand)  or the best 
population so far (best). 
 
- Y: the number of vectors used to evaluate the 
differential perturbation: 
 
- Z: Is the type of crossover operation used which can 
either be of the exponential (exp) type or binary (bin) 
type. Thus, ten DE algorithm variations can be 
summarized by: 1) DE/best/1/exp; 2) DE/rand/1/exp ; 
3) DE/rand-to-best/1/exp; 4) DE/best/2/exp; 5) 
DE/rand/2/exp ; 6) DE/best/1/bin; 7) DE/rand/1/bin ; 
8) DE/rand-to-best/1/bin; 9) DE/best/2/bin  and 
10)DE/rand/2/bin, and are well described in ( Price, 
2002). 
 
Figure 2 illustrates the DE basic concept (Lampinem 
J. and Zelinka, 1999), and it is important to note that 
this algorithm does not use any type of coding 
scheme operating directly in the optimizing 
parameters.  
 

[Initialization of the population vector] 
Initialize pop_new; [matrix with random values] 
Initialize best; [best vector] 
Initialize best_value; [best value] 
From j = 0 until maximum number of iterations: 

[Copies the initialized matrix to a general one] 
pop = pop_new; 
From i = 0 until m: 

[Chooses randomly three numbers between 0 and 
m] 

r1 = a vector index different from i; 
r2 = a vector index different from i and r1; 
r3 = a vector index different from i, r1 and r2; 
[Saves the vector i ] 
temp = pop( i, :); 
[The following equation changes with the strategy] 

xv = pop( r1) + F*( pop( r2)  - pop( r3) ); 
[Evaluate the new temp vector] 
xc=crossover(xv,xi) 
Value_new = evaluation(xc); 
Value_old = evaluation(pop( i )) ; 
If  (Value_new < Value_old) do: 

[It means that the new vector is better] 
pop_new( i, :) = xc; 
If  (value_new < value_best) do: 

[Best value ever] 
value_best = value_new; 
best = temp; 

else 
[Keeps the old value] 
pop_new( i,:) = pop_old( i, :); 

i = i + 1;   
end 

j = j + 1; 
end 

n
v Rx ∈r



     

 
 

Fig. 2. Global scheme for Differential Evolution.  
 
 

3. OFF-LINE PATH PLANNING 
 
In the off-line case, the simulated world is defined 
using static obstacles, and the optimization objective 
is to establish a full path, avoiding collisions. Thus, 
the DE algorithm is used as the optimization tool, 
and its performance evaluated. The robot world is 
defined by a square in the Cartesian plan, limited by 
the coordinates of its vertices. The robot position is 
represented by its coordinates corresponding to one 
point in the plane. The path between the start and 
goal positions is defined by line segments which link 
all the different points defined by the differential 
evolution.  
 
In order to use the DE algorithm some parameters 
must be defined prior to the search procedure, such 
as:  
 
- the number of optimization points (d). The number 
of segments equals the number of points plus one. 
(Segments=d+1). Thus, path flexibility depends on 
the number of points, 
 
- initial and final positions for the robot (Start and 
Goal), 
 
- maximum number of iterations, 
 
- DE strategy,   
 
- population size (m).  
 
- amplification factor F. This  parameter is multiplied 
by the difference between two vectors. It should be 
selected in order to prevent premature convergence 
(0<F<2); 
 

- crossover probability (CR). Using a higher CR will 
increase the convergence speed.  Values between 0 
and 1 are usually used. 
 
At this stage, it is important to underline the type of 
objective function used, which for every potential 
solution verifies if the corresponding trajectory 
intersects obstacles. It returns the length of the path 
connecting the starting and goal points . The global 
objective is to find the path which requires the 
minimum number of points and provides minimum 
length.  
 
The defined static obstacles are defined using 
circular and polygonal shapes. For the circular case 
(Figure 3), the obstacles are defined by their circle 
centre and radius. Using this, a simple way to avoid 
collisions, consists on determining the minimum 
distance between each segment of the path and the 
centre of each obstacle. If this distance remains 
greater than the radius of each obstacle, there are no 
collisions.    

 
Fig. 3. Example of the defined world, with circular 
obstacles. 
  
The distance between a point and a line, is given by 
the perpendicular segment that crosses the point. 
However, it is necessary to determine if the 
perpendicular line intersects the segment, otherwise 
the minimum distance is evaluated in relation to 
segment nearest extreme point. Assuming that the 
centre of the circular obstacle is represented by P and 
the line segment is represented by P0P1, an easy way 
to solve this problem is to consider the internal 
product of the angles between vectors P0P and P1P 
(Sunday, 2001a). If the result of this product is 
negative or positive, it means that the shortest 
distance between the central point and the segment is 
connected to one of the extreme points of the latest. 
If the product result is zero it means that the 
perpendicular line between the circle central point 
intersects the segment and it is the shortest distance 
(Figure 4).     
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Fig. 4. Angles between the segments , (Sunday, 
2001a).  
 
The pseudo-code used to evaluate the minimum 
distance between a circular obstacle and a strait line 
segment is shown in Figure 5. 

 

 
 

Fig. 5. Distance between a point and a line segment. 
 
In the case of polygonal obstacles, they are defined 
by the connection of their vertices by line segments, 
as it is illustrated in Figure 6. 

 
Fig. 6. Robot world with polygonal walls .  
 
One way to avoid collisions is to check if every line 
segment of the optimized trajectory intersects the 
line segments defining the polygons (Sunday, 
2001d). The pseudo-code used for this case is shown 
in Figure 7. It is clear that the optimized trajectory 
can not include line segments with are inside the 
polygonal shapes. To prevent this case it is necessary 
to determine for each solution if all the extreme 
points of all the defining segments are not inside the 
polygons. In figure 8 a pseudo code (Sunday, 2001b) 
is present that was used to solve this problem.  
 

 
 

Fig. 7. Intersection of two segments. 
 
The algorithm shown in Figure 8, for each test point 
uses a parallel line to the x axis , determining the 
number of intersections between the polygon and 
points to the right of the test point. If the number of 
intersections is even it means that the point is outside 
the polygon, otherwise it is inside.    

 

 
 

Fig. 8. Algorithm that checks if a point is inside or 
outside a polygon. 

 
Another case is when one of the path segments and 
one of the polygon segments are collinear. To solve 
this problem the pseudo-code presented in Figure 9 
was used (Sunday, 2001c).  
 

 
 

Fig. 9. Detects if two line segments are collinear. 
  

Distance (Point P, Segment P0P1) 
v = P1 – P0; 
w = P - P0; 
If  ( (c1 = w · v ) <= 0 ) 

Return distance from P to P0; 
If  ( (c2 = v · v ) <= c1 ) 

Return distance from P to P1; 
b = c1 / c 2; 
base point = P0 + b*v; 
Return distance from P to base point; 

 

[Tests the intersection from two segments, returning: 0 
= none, 1 = intersec tion] 

Intersection (Segment P0P1; Segment P2P3) 
 

Test (Local) if P0 and P1 are in the left, right or over 
P2P3; 

If (P0 and P1  are in the left or P0 and P1 are in the 
right) do: 

Return 0; 
 
Else: 
   Test (Local) if P2 and P3 are in the left, right or over 

P0P1; 
        If (P2 and P3 are in the left or P2 and P3 are in 

the right) do: 
         Return 0; 
    Else: 

      Return 1; 
 
[Checks if a point is in the left, right or over a segment, 

returning: >0 for left; =0 for over; <0 for 
right] 

Local (Point Pa, Point Pb, Point Pc)  
Return (Pb.x – Pa.x) * (Pc.y – Pa.y) - (Pc.x – Pa.x) * (Pb.y – 

Pa.y) 

 

Checkpoint (Point P, Vector with vertices from polygon V) 
Counter = 0; 
Do for each segment of the polygon: 

If polygon segment intersects support line do: 
If  P is left from the segment: 

Counter = Counter + 1; 
Else: 

If  P is right from the segment:  
Counter = Counter – 1; 

Cycle end; 
Return Counter; 

Point in a Segment (Point P, Segment S) 
If (S.0.x ? S.1.x) do: 

If  (S.0.x <= P.x) e (P.x <= S.1.x) do: 
Return True; 

If (S.0.x >= P.x) e (P.x >= S.1.x) do: 
Return True; 

Else: 
If  (S.0.y <= P.y) e (P.x <= S.1.y) do: 

Return True; 
If (S.0.y >= P.y) e (P.x >= S.1.y) do: 

Return True; 
 

Return false;        [If none of the conditions is possible] 



     

4. SIMULATION RESULTS 
 
 

4.1 Case Study I 
 
In the first case two circular obstacles were 
considered located in between the starting and goal 
points, (Figure 10). The strategy number 6 was 
selected for the DE algorithm and the crossover 
probability and amplification parameter were set to 
CR = 0.8 e F = 0.8, respectively. Different 
population sizes and number of points defining the 
trajectory are used and the number of iterations is 
1000 per test. The results obtained with 20 runs for 
each condition are presented in Table 1. 
 

Table 1 Results from the case study I 
 

d  m 
Best 

Distance 

Distance 
Average 

Value 
4 30 30,7912 30,80322 
 50 30,7911 30,79420 
 100 30,7912 30,79429 
5 30 30,7718 30,79900 
 50 30,7716 30,78613 
 100 30,7725 30,78533 
6 30 30,7712 30,79046 
 50 30,7741 30,79011 
 100 30,7758 30,79304 
7 30 30,7667 30,80538 
 50 30,7684 30,79933 
 100 30,7903 30,80562 
 
The results achieved for different combinations 
between the number of points and population size are 
practically identical. In Figure 10, the path obtained 
with minimum distance (with 7 points and 
population size of 30) and the path obtained with 
maximum distance (with 4 points and population size 
of 30) are represented. While different, they 
correspond to very similar cost values in terms of 
distances attained.  
 

 
 

Fig. 10. Two optimized solutions for the case study I.  
         
Figures 11 to 15 illustrate convergence plots for 
several optimization conditions.   
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Fig. 11. Best distance convergence graphic with: 2 

round obstacles; strategy 6; population of 100 and 
6 points. 
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Fig. 12. Best distance convergence graphic with: 4 

round obstacles; strategy 9; population of 50 and 
7 points. 
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Fig. 13. Average convergence graphic with: 2 round 

obstacles; strategy 8; population of 30 and 5 
points. 
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Fig. 14. Average convergence graphic with: 5 

polygonal obstacles; strategy 6; population of 30 
and 4 points. 
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Fig. 15. Point coordinates  convergence graphic with: 
4 round obstacles; strategy 6; population of 30 and 4 
points. 
 
The results clearly indicate that there is no need to 
perform 1000 iterations, thus the simulation period is 
reduced to 500 iterations per test for the case study 
II.   
 
 
4.2 Case Study II 
 
Case study I was not hard enough to evaluate the DE 
algorithm. Thus in this case study the robot world 
has four circular obstacles as it is shown in Figure 
16. The simulated results obtained for this case are 
presented in Table 2, in which several combinations 
between the number of points defining the path, 
population size and DE strategies were considered.  

 
Table 2 Tests results with four case study II. 

 

N m Str1 
Best 

Distance 
Distance 
average 

4 30 6 32,8304 33,56297 
  8 32,9924 33,89754 
  9 33,2588 37,697395 
 50 6 32,6951 33,868625 
  8 32,8162 33,280825 
  9 34,0119 37,59996 
 100 6 32,5566 33,70214 
  8 32,488 32,967025 
  9 35,0931 37,7244 
5 30 6 33,0608 33,822465 
  8 33,1618 33,58607 
  9 35,7624 40,066135 
 50 6 32,7631 33,562595 
  8 32,8727 33,8194 
  9 37,0991 40,811525 
 100 6 32,6107 34,35063 
  8 32,4066 33,57655 
  9 37,0881 40,36724 
6 30 6 33,4941 34,086565 
  8 32,9629 34,101175 
  9 35,8821 45,009295 
 50 6 32,9319 33,492605 

                                                 
1 Strategy. 

  8 32,5999 34,33487 
  9 39,4767 44,284785 
 100 6 31,8105 37,43633 
  8 32,8198 34,626335 
  9 38,74 43,90211 
7 30 6 33,2443 35,384755 
  8 33,1747 35,15421 
  9 37,5418 44,14192 
 50 6 33,0859 35,211695 
  8 33,3694 34,377645 
  9 39,9851 45,45782 
 100 6 32,9407 37,21735 
  8 32,9297 33,830625 
  9 41,0129 45,376245 
 
In this case the differences between the different test 
conditions are more significant. Strategy 6 is the one 
who delivered best results, as it can be verified by the 
best distances achieved. In Figure 16 some 
trajectories are plotted for a population size of 100 
and different strategies and number of points.     

 
Fig. 16. Several paths in a world with four round 

obstacles. 
 
 
4.3 Case Study III 
  
In this case the simulated world has polygonal 
obstacles represented by walls ,  (Figure 17). Some 
preliminary results are presented in Table 3 using 
strategy 6, CR=0.8, F=0.8 and 500 iterations per test. 
A total of 20 runs per combination were made. The 
initial population was generated randomly. The 
results are not conclusive at this stage.    
 

Table 3 Tests results with polygonal obstacles 
 

Number of 
points 

Number of 
population 

Best 
distance 

Distance 
average 

4 30 41,3828 305,128895 
 50 42,5877 204,55312 
 100 43,2795 266,430845 
5 30 41,9369 247,398085 
 50 40,8407 285,943 
 
While the DE algorithm managed to provide good 
path solutions for this case, it was clear that allowing 
randomly generated solutions which are not viable to 
incorporate the initial population deteriorate the 
algorithm performance. Some paths corresponding to 
the results presented in Table 3 are plotted in Figure 
17. 



     

 
 
Fig. 17. Several optimized paths for a simulated 

world with polygonal obstacles. 
 
 

5. CONCLUSIONS AND FURTHER WORK 
 
The Differential Evolution Algorithm was proposed 
to address the path planning optimization problem. 
The obstacles were considered to be static and of 
circular and polygonal shapes and the path 
optimization performed off-line. 
 
The results indicated that the Differential Evolution 
Algorithm could solve this problem satisfactorily, 
achieving the best results in terms of the 
minimization of the path length with strategy number 
6.  
 
Current research is being carried out in order to 
complete the optimization with polygonal obstacles. 
Future tests will implement the algorithms on-line 
assuming dynamic obstacles and comparisons with 
other evolutionary based algorithms, such as genetic 
algorithm and the particle swarm optimization 
algorithm.   
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