

PATH PLANNING OPTIMIZATION USING THE DIFFERENTIAL EVOLUTION ALGORITHM

Hélder Santos, José Mendes, P. B. de Moura Oliveira and J. Boaventura Cunha

Universidade de Trás-os-Montes e Alto Douro
Departamento de Engenharias

Quinta dos Prados, 5000 Vila Real – Portugal
 e-mail: opt_trajectorias@mail.pt

Abstract: In this paper the Differential Evolution algorithm is deployed to the robotic path
planning optimization problem for autonomous mobile vehicles. At this stage, the
simulations consider the robot world with level surfaces and static obstacles , in which the
optimization is performed off-line. The global objective is to evaluate the differential
evolutionary algorithm in solving path planning problems, by finding the shortest path
between start and goal points. Results obtained for three case studies with static circular
and polygonal obstacles are presented.

Keywords: Evolutionary Algorithms, Differential Evolution, Optimization, Path
Planning, Obstacles Avoidance, Vehicle Routing.

1. INTRODUCTION

One of the robotics main research field is the control
algorithms development which allows robot mobility
in a environment surrounded by obstacles. In this
context, the path planning problem plays an
important role by providing trajectories to avoid
obstacles. There are several well known methods of
path planning. Its choice depends on the comple xity
and quality of the world where the vehicle will move,
as well as the vehicle’s qualities. There are some
criteria to evaluate the planning, such as path length,
time spent, obstacle distance or the complexity and
smoothness of the path.

The relevance of applying efficient optimization
algorithms to solve trajectory optimization problems
is unquestionable. This is the case of evolutionary
inspired algorithms, particularly the popular genetic
algorithms (Goldberg, 1989; Michalewicz, 1992).
One more recently introduced algorithm is the
Differential Evolution proposed by Price and Storn
(1995) which provides good results in the context of
function optimization (Storn, 1996).

This paper describes the off-line optimization of
mobile robots trajectories using the Differential
Evolution Algorithm, considering a world with level
surfaces and obstacles represented by round and
polygonal shapes. The path is formed by strait line
segments. The overall objective of the expected work

is to acess the Differential Evolution algorithm in the
context of robotic path planning optimization using
evolutionary inspired techniques. The optimization
objective is to achieve the shortest path, between two
points, avoiding any obstacle in the way.

The rest of this paper is organized as follows in
section two an introduction to the Differential
Algorithm is provided. Section three describes the
off-line path planning problem considered. In section
four simulation results are presented and finally in
section five some conclusions are drawn.

2. DIFFERENTIAL EVOLUTION

The Differential Evolution (DE) algorithm was
originally developed by Price and Storn (1995). The
solution of this algorithm, to address the path
planning problem, was based upon its efficiency,
effectiveness and robustness in the optimization of
functions (Storn, 1996). The DE can be easily
implemented to solve several types of optimization
problems , such as path planning.

Assuming that a vector x

r
 represented by (1)

represents a candidate solution to the path
optimization problem, in which t represents the
current evolutionary iteration, a new solution vector

can be evaluated from the previous vector
by using equation (2), with (3), representing an

()1+tx
r

δ
r

Actas do Encontro Científico
3º Festival Nacional de Robótica - ROBOTICA2003
Lisboa, 9 de Maio de 2003.

incremental vector.

() () () ()txtxtxtx n,,, 21 Kv = (1)

() () ()ttxtx δ
rrr

+=+1 (2)

() () () ()tttt nδδδδ ,,, 21 K
r

= (3)

Considering a set pop of potential solutions with size
m, represented by (4), known as population (2) can
be rewritten as (5) with d representing the dimension
index.

() () ()() mitxtxtxtpop iniii ≤≤= 1,,,)(21 K
 (4)

() () () ndmitidtidxtidx ≤≤≤≤++=+ 1111 δ
 (5)

A trial vector is generated in each
iteration for each population member using (6) and
the increment δ is evaluated using (7). In these
expressions

1rx
r

,
2rx

r
 and

3rx
r

 are vectors selected

randomly from the population set pop, in each

iteration, and +∈ RF is a constant defined prior to
optimization.

() () ()
[] imrndmi

ttxtx iddridv

≠∈≤≤≤≤

++=+

,111

11

1

1
δ

(6)

() () ()()
[]

[] 213

312
,1

,111

1
32

rrimr

rrimrndmi

txtxFt drdrid

≠≠≠∈

≠≠≠∈≤≤≤≤

−=+δ

(7)

The trial vector obtained with (6) and (7) is then
crossed with the current population element

i
x

r

accordingly to a crossover scheme, binomial or
exponential (Storn and Price, 1995), with a pre-
defined probability defined by []1,0∈CR resulting in
a new vector cix

r
 (8). If the value returned by the

objective function f for the crossed trial vector is
better or equal than the value obtained for the current
vector, the latest is replaced by the former. This is
represented by (9) for a minimization problem.

() () ()() mitxtxcrossovertx viici ≤≤+=+ 11,1
rrr

 (8)

() () ()() ()()
mi

txftcxfiftcxtx iiii
≤≤

+<++=+

1

1111
rrrr

 (9)

In Figure 1 a pseudo-code is shown that can be used
to implement the DE algorithm, in which comments
are included between brackets.

Fig. 1. A Pseudo-code for the DE algorithm.

The different strategies proposed for this algorithm
are, basically, very similar, differing in the evaluation
of the nRvx ∈

r vector. Price and Storn (1995)

proposed ten different options that can be classified
using the notation DE/X/Y/Z, where:

- X: represents the methodology used to select vector
r1, which can be random selected (rand) or the best
population so far (best).

- Y: the number of vectors used to evaluate the
differential perturbation:

- Z: Is the type of crossover operation used which can
either be of the exponential (exp) type or binary (bin)
type. Thus, ten DE algorithm variations can be
summarized by: 1) DE/best/1/exp; 2) DE/rand/1/exp ;
3) DE/rand-to-best/1/exp; 4) DE/best/2/exp; 5)
DE/rand/2/exp ; 6) DE/best/1/bin; 7) DE/rand/1/bin ;
8) DE/rand-to-best/1/bin; 9) DE/best/2/bin and
10)DE/rand/2/bin, and are well described in (Price,
2002).

Figure 2 illustrates the DE basic concept (Lampinem
J. and Zelinka, 1999), and it is important to note that
this algorithm does not use any type of coding
scheme operating directly in the optimizing
parameters.

[Initialization of the population vector]
Initialize pop_new; [matrix with random values]
Initialize best; [best vector]
Initialize best_value; [best value]
From j = 0 until maximum number of iterations:

[Copies the initialized matrix to a general one]
pop = pop_new;
From i = 0 until m:

[Chooses randomly three numbers between 0 and
m]

r1 = a vector index different from i;
r2 = a vector index different from i and r1;
r3 = a vector index different from i, r1 and r2;
[Saves the vector i]
temp = pop(i, :);
[The following equation changes with the strategy]

xv = pop(r1) + F*(pop(r2) - pop(r3));
[Evaluate the new temp vector]
xc=crossover(xv,xi)
Value_new = evaluation(xc);
Value_old = evaluation(pop(i)) ;
If (Value_new < Value_old) do:

[It means that the new vector is better]
pop_new(i, :) = xc;
If (value_new < value_best) do:

[Best value ever]
value_best = value_new;
best = temp;

else
[Keeps the old value]
pop_new(i,:) = pop_old(i, :);

i = i + 1;
end

j = j + 1;
end

n
v Rx ∈r

Fig. 2. Global scheme for Differential Evolution.

3. OFF-LINE PATH PLANNING

In the off-line case, the simulated world is defined
using static obstacles, and the optimization objective
is to establish a full path, avoiding collisions. Thus,
the DE algorithm is used as the optimization tool,
and its performance evaluated. The robot world is
defined by a square in the Cartesian plan, limited by
the coordinates of its vertices. The robot position is
represented by its coordinates corresponding to one
point in the plane. The path between the start and
goal positions is defined by line segments which link
all the different points defined by the differential
evolution.

In order to use the DE algorithm some parameters
must be defined prior to the search procedure, such
as:

- the number of optimization points (d). The number
of segments equals the number of points plus one.
(Segments=d+1). Thus, path flexibility depends on
the number of points,

- initial and final positions for the robot (Start and
Goal),

- maximum number of iterations,

- DE strategy,

- population size (m).

- amplification factor F. This parameter is multiplied
by the difference between two vectors. It should be
selected in order to prevent premature convergence
(0<F<2);

- crossover probability (CR). Using a higher CR will
increase the convergence speed. Values between 0
and 1 are usually used.

At this stage, it is important to underline the type of
objective function used, which for every potential
solution verifies if the corresponding trajectory
intersects obstacles. It returns the length of the path
connecting the starting and goal points . The global
objective is to find the path which requires the
minimum number of points and provides minimum
length.

The defined static obstacles are defined using
circular and polygonal shapes. For the circular case
(Figure 3), the obstacles are defined by their circle
centre and radius. Using this, a simple way to avoid
collisions, consists on determining the minimum
distance between each segment of the path and the
centre of each obstacle. If this distance remains
greater than the radius of each obstacle, there are no
collisions.

Fig. 3. Example of the defined world, with circular
obstacles.

The distance between a point and a line, is given by
the perpendicular segment that crosses the point.
However, it is necessary to determine if the
perpendicular line intersects the segment, otherwise
the minimum distance is evaluated in relation to
segment nearest extreme point. Assuming that the
centre of the circular obstacle is represented by P and
the line segment is represented by P0P1, an easy way
to solve this problem is to consider the internal
product of the angles between vectors P0P and P1P
(Sunday, 2001a). If the result of this product is
negative or positive, it means that the shortest
distance between the central point and the segment is
connected to one of the extreme points of the latest.
If the product result is zero it means that the
perpendicular line between the circle central point
intersects the segment and it is the shortest distance
(Figure 4).

José Luís Mendes

Fig. 4. Angles between the segments , (Sunday,
2001a).

The pseudo-code used to evaluate the minimum
distance between a circular obstacle and a strait line
segment is shown in Figure 5.

Fig. 5. Distance between a point and a line segment.

In the case of polygonal obstacles, they are defined
by the connection of their vertices by line segments,
as it is illustrated in Figure 6.

Fig. 6. Robot world with polygonal walls .

One way to avoid collisions is to check if every line
segment of the optimized trajectory intersects the
line segments defining the polygons (Sunday,
2001d). The pseudo-code used for this case is shown
in Figure 7. It is clear that the optimized trajectory
can not include line segments with are inside the
polygonal shapes. To prevent this case it is necessary
to determine for each solution if all the extreme
points of all the defining segments are not inside the
polygons. In figure 8 a pseudo code (Sunday, 2001b)
is present that was used to solve this problem.

Fig. 7. Intersection of two segments.

The algorithm shown in Figure 8, for each test point
uses a parallel line to the x axis , determining the
number of intersections between the polygon and
points to the right of the test point. If the number of
intersections is even it means that the point is outside
the polygon, otherwise it is inside.

Fig. 8. Algorithm that checks if a point is inside or
outside a polygon.

Another case is when one of the path segments and
one of the polygon segments are collinear. To solve
this problem the pseudo-code presented in Figure 9
was used (Sunday, 2001c).

Fig. 9. Detects if two line segments are collinear.

Distance (Point P, Segment P0P1)
v = P1 – P0;
w = P - P0;
If ((c1 = w · v) <= 0)

Return distance from P to P0;
If ((c2 = v · v) <= c1)

Return distance from P to P1;
b = c1 / c 2;
base point = P0 + b*v;
Return distance from P to base point;

[Tests the intersection from two segments, returning: 0
= none, 1 = intersec tion]

Intersection (Segment P0P1; Segment P2P3)

Test (Local) if P0 and P1 are in the left, right or over
P2P3;

If (P0 and P1 are in the left or P0 and P1 are in the
right) do:

Return 0;

Else:
 Test (Local) if P2 and P3 are in the left, right or over

P0P1;
 If (P2 and P3 are in the left or P2 and P3 are in

the right) do:
 Return 0;
 Else:

 Return 1;

[Checks if a point is in the left, right or over a segment,

returning: >0 for left; =0 for over; <0 for
right]

Local (Point Pa, Point Pb, Point Pc)
Return (Pb.x – Pa.x) * (Pc.y – Pa.y) - (Pc.x – Pa.x) * (Pb.y –

Pa.y)

Checkpoint (Point P, Vector with vertices from polygon V)
Counter = 0;
Do for each segment of the polygon:

If polygon segment intersects support line do:
If P is left from the segment:

Counter = Counter + 1;
Else:

If P is right from the segment:
Counter = Counter – 1;

Cycle end;
Return Counter;

Point in a Segment (Point P, Segment S)
If (S.0.x ? S.1.x) do:

If (S.0.x <= P.x) e (P.x <= S.1.x) do:
Return True;

If (S.0.x >= P.x) e (P.x >= S.1.x) do:
Return True;

Else:
If (S.0.y <= P.y) e (P.x <= S.1.y) do:

Return True;
If (S.0.y >= P.y) e (P.x >= S.1.y) do:

Return True;

Return false; [If none of the conditions is possible]

4. SIMULATION RESULTS

4.1 Case Study I

In the first case two circular obstacles were
considered located in between the starting and goal
points, (Figure 10). The strategy number 6 was
selected for the DE algorithm and the crossover
probability and amplification parameter were set to
CR = 0.8 e F = 0.8, respectively. Different
population sizes and number of points defining the
trajectory are used and the number of iterations is
1000 per test. The results obtained with 20 runs for
each condition are presented in Table 1.

Table 1 Results from the case study I

d m
Best

Distance

Distance
Average

Value
4 30 30,7912 30,80322
 50 30,7911 30,79420
 100 30,7912 30,79429
5 30 30,7718 30,79900
 50 30,7716 30,78613
 100 30,7725 30,78533
6 30 30,7712 30,79046
 50 30,7741 30,79011
 100 30,7758 30,79304
7 30 30,7667 30,80538
 50 30,7684 30,79933
 100 30,7903 30,80562

The results achieved for different combinations
between the number of points and population size are
practically identical. In Figure 10, the path obtained
with minimum distance (with 7 points and
population size of 30) and the path obtained with
maximum distance (with 4 points and population size
of 30) are represented. While different, they
correspond to very similar cost values in terms of
distances attained.

Fig. 10. Two optimized solutions for the case study I.

Figures 11 to 15 illustrate convergence plots for
several optimization conditions.

Best distance convergence

0

10

20

30

40

50

60

70

80

1 10 100 1000

Iterations

D
is

ta
n

ce

Fig. 11. Best distance convergence graphic with: 2

round obstacles; strategy 6; population of 100 and
6 points.

Best distance convergence

0

10

20

30

40

50

60

70

80

1 10 100 1000

Iterations

D
is

ta
n

ce

Fig. 12. Best distance convergence graphic with: 4

round obstacles; strategy 9; population of 50 and
7 points.

Average convergence

0

50

100

150

200

250

300

350

400

1 10 100 1000

Iterations

A
ve

ra
g

e

Fig. 13. Average convergence graphic with: 2 round

obstacles; strategy 8; population of 30 and 5
points.

Average convergence

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000

Iterations

A
ve

ra
ge

Fig. 14. Average convergence graphic with: 5

polygonal obstacles; strategy 6; population of 30
and 4 points.

0

10

20

30

40

1 10 100 1000

Iterations

P
oi

nt
s

X1 Y1 X2 Y2

X3 Y3 X4 Y4

Fig. 15. Point coordinates convergence graphic with:
4 round obstacles; strategy 6; population of 30 and 4
points.

The results clearly indicate that there is no need to
perform 1000 iterations, thus the simulation period is
reduced to 500 iterations per test for the case study
II.

4.2 Case Study II

Case study I was not hard enough to evaluate the DE
algorithm. Thus in this case study the robot world
has four circular obstacles as it is shown in Figure
16. The simulated results obtained for this case are
presented in Table 2, in which several combinations
between the number of points defining the path,
population size and DE strategies were considered.

Table 2 Tests results with four case study II.

N m Str1
Best

Distance
Distance
average

4 30 6 32,8304 33,56297
 8 32,9924 33,89754
 9 33,2588 37,697395
 50 6 32,6951 33,868625
 8 32,8162 33,280825
 9 34,0119 37,59996
 100 6 32,5566 33,70214
 8 32,488 32,967025
 9 35,0931 37,7244
5 30 6 33,0608 33,822465
 8 33,1618 33,58607
 9 35,7624 40,066135
 50 6 32,7631 33,562595
 8 32,8727 33,8194
 9 37,0991 40,811525
 100 6 32,6107 34,35063
 8 32,4066 33,57655
 9 37,0881 40,36724
6 30 6 33,4941 34,086565
 8 32,9629 34,101175
 9 35,8821 45,009295
 50 6 32,9319 33,492605

1 Strategy.

 8 32,5999 34,33487
 9 39,4767 44,284785
 100 6 31,8105 37,43633
 8 32,8198 34,626335
 9 38,74 43,90211
7 30 6 33,2443 35,384755
 8 33,1747 35,15421
 9 37,5418 44,14192
 50 6 33,0859 35,211695
 8 33,3694 34,377645
 9 39,9851 45,45782
 100 6 32,9407 37,21735
 8 32,9297 33,830625
 9 41,0129 45,376245

In this case the differences between the different test
conditions are more significant. Strategy 6 is the one
who delivered best results, as it can be verified by the
best distances achieved. In Figure 16 some
trajectories are plotted for a population size of 100
and different strategies and number of points.

Fig. 16. Several paths in a world with four round

obstacles.

4.3 Case Study III

In this case the simulated world has polygonal
obstacles represented by walls , (Figure 17). Some
preliminary results are presented in Table 3 using
strategy 6, CR=0.8, F=0.8 and 500 iterations per test.
A total of 20 runs per combination were made. The
initial population was generated randomly. The
results are not conclusive at this stage.

Table 3 Tests results with polygonal obstacles

Number of
points

Number of
population

Best
distance

Distance
average

4 30 41,3828 305,128895
 50 42,5877 204,55312
 100 43,2795 266,430845
5 30 41,9369 247,398085
 50 40,8407 285,943

While the DE algorithm managed to provide good
path solutions for this case, it was clear that allowing
randomly generated solutions which are not viable to
incorporate the initial population deteriorate the
algorithm performance. Some paths corresponding to
the results presented in Table 3 are plotted in Figure
17.

Fig. 17. Several optimized paths for a simulated

world with polygonal obstacles.

5. CONCLUSIONS AND FURTHER WORK

The Differential Evolution Algorithm was proposed
to address the path planning optimization problem.
The obstacles were considered to be static and of
circular and polygonal shapes and the path
optimization performed off-line.

The results indicated that the Differential Evolution
Algorithm could solve this problem satisfactorily,
achieving the best results in terms of the
minimization of the path length with strategy number
6.

Current research is being carried out in order to
complete the optimization with polygonal obstacles.
Future tests will implement the algorithms on-line
assuming dynamic obstacles and comparisons with
other evolutionary based algorithms, such as genetic
algorithm and the particle swarm optimization
algorithm.

REFERENCES

Goldberg, David E. (1989). Genetic Algorithms in
search, Optimization and Machine Learning.
Addison-Wesley, Reading (MA).

Michalewicz Z, (1992), "Genetic Algorithms + Data
Structures = Evolution Programs", 2nd Edit.,
Springer-Verlag P.C..

Storn, Rainer and Price, Kenneth (1995). Differential
Evolution – A simple and efficient adaptive
scheme for global optimization over continuous
spaces. Technical Report TR-95-012, ICSI,
March 1995.

Storn, Rainer (1996). On the usage of Differential
Evolution for Function Optimization. NAFIPS
1996, Berkeley, pp. 519 – 523

Sunday, Dan (2001a). About Lines and Distance of a
Point to a Line (2D & 3D),Geometry Algorithm
Archive, February 2001.

Sunday, Dan (2001b). Fast Winding Number
Inclusion of a Point in a Polygon, Geometry
Algorithm Archive, March 2001.

Sunday, Dan (2001c). Intersections of Lines,
Segments and Planes (2D and 3D),Geometry
Algorithm Archive, April 2001.

Sunday, Dan (2001d). The Intersections for a Set of
2D Segments, and Testing Simple Polygons,
Geometry Algorithm Archive, August 2001.

Price K. e Storn R. (2002), Differential evolution
homepage:
http:/www.ICSI.Berkeley.edu/~storn/.

Lampinem J. e Zelinka I., (1999), Mixed Variable
Non-Linear Optimization by Differential
Evolution, Em Zelinka I. (Editor),
Proceedings of Nostradamus'99, 2nd
International Prediction Conference, Zlin,
República Checa, pp. 45-55.

	Path Planning Optimization
	Abstract
	1. Introduction
	2. Differential Evolution
	3. Off-Line Path Planning
	4. Simulation Results
	4.1. Case Study I
	4.2. Case Study II
	4.3. Case Study III

	5. Conclusions And Further Work
	References

