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Abstract: This paper introduces a method for representing, communicating and
fusing distributed, noisy and uncertain observations of objects by multiple robots.
The approach relies on re-parameterization of two-dimensional Gaussian distri-
butions that are used to represent the positions of all players and the ball.
The approach enables two or more observers to achieve greater effective sensor
coverage of the environment and improved accuracy in object position estimation.
We demonstrate empirically that, using this approach, more observers achieve
more accurate object position estimates. Two different procedures for merging
Gaussian distributions were implemented and tested in the RoboCup Soccer Server,
a simulated environment for robotic soccer. We also present the first results
obtained with middle-size league robots.
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1. INTRODUCTION

In recent years we have seen an increasing interest
in the development of multi-sensory robot sys-
tems. The reason for this interest stems from the
conclusion that there are fundamental limitations
on the reconstruction of environment descriptions
using only a single source of sensor information.
If robot systems are ever to achieve a degree of
intelligence and autonomy, they must be capa-
ble of using many different sources of sensory
information in an active and dynamic manner.
Typically, individual robots can only observe part
of their environment at any moment in time.
In dynamic environments, information previously
collected about currently unobservable parts of
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the environment grows stale and becomes inaccu-
rate. Sharing information among robots increases
the effective instantaneous visibility of the en-
vironment, allowing for more accurate modeling
and more appropriate response. If processed effec-
tively, information collected from multiple points
of view can provide reduced uncertainty, improved
accuracy and increased tolerance to single point
failures in estimating the location of observed
objects. By combining information from many
different sources, it would be possible to reduce
the uncertainty and ambiguity inherent in mak-
ing decisions based only in a single information
source. Our goal is to implement and compare two
different sensor fusion methods that are presented
in Sections 4 and 5, using a simulation scenario
based on the RoboCup Soccer Server, which is
explained in Section 3. In Section 6 we discuss



our experimental results obtained with simulated
a real robots. Finally, in Section 7 conclusions are
drawn.

2. BACKGROUND AND RELATED WORK

Most robot soccer team approaches use vision
and/or sonar to localize the robots and vision to
locate objects in the environment. Some teams
share information for planning and dynamic role
assignment. Others fill-in blank areas in the world
model with shared data. Other distributed sens-
ing approaches include merging independent grid
cell occupancy probabilities measured by multiple
robots (possibly distributed in time), and curve
fitting of models and observations by multiple
robots. The tasks addressed in (Durrant-Whyte
1988) and (Stroupe, Martin and Balch 2000a) is
distinct from the others described above. These
approaches focus on fusing multiple simultaneous
observations of the same object from distributed
vantage points (as opposed to observations from
the same vantage point over multiple instants in
time). Our goal is to provide more accurate instan-
taneous estimations of the location of dynamic
objects that are simultaneously visible by multiple
robots without relying on historical data.

3. ROBOCUP SOCCER SERVER

The RoboCup Soccer Server (Itsuki 2001) is a soc-
cer simulation system which enables teams of au-
tonomous agents to play a match of soccer against
each other. The system was originally developed
in 1993 by Itsuki Noda (Itsuki 2001). A simulation
soccer match is carried out in client-server style.
The soccer server provides a domain (2-D virtual
soccer field), simulates all the movements of ob-
jects in this domain and controls a soccer game
according to several rules.

A RoboCup agent has three different types of
sensors: a visual sensor, an aural sensor and a body
sensor. In the remainder of this section we discuss
the characteristics of the visual and aural sensors,
which allow us to implement sensor fusion in this
domain.

3.1 Visual Sensor

The visual sensor detects visual information about
the field such as distance and direction to objects
in the players current field of view (see Figure
1). This information is automatically sent to the
player every 150 ms. All visual information given
is relative from the player’s perspective. As a
result, a player cannot directly see his own global
position or the global position of other players and
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Fig. 1. Agent’s field of view, reprinted from (Itsuki
2001)

of the ball. The agents thus need a way to derive
global information from a visual message. For
this purpose, several landmarks (flags, lines and
goals), with known global positions, are placed on
and around the field. By combining the known
global positions of these landmarks and their
relative positions (included in the visual message)
an agent can determine his own global position
and the global positions of the ball and other
players.

One of the real-world complexities contained in
the soccer server is that the precision of visual
information decreases as the distance to an ob-
ject increases. Noise is introduced into the visual
sensor data by quantizing the values sent by the
server. Distances to objects are quantized as:

Q_-Dist =
Q(exp(Q(In(Dist), StepVal)),0.1) (1)

where Dist and @Q_Dist are the exact and quan-
tized distance values respectively and StepVal
is a parameter denoting the quantize step. For
players and the ball StepVal is equal to 0.1 and
for landmarks the value 0.01 is used. Furthermore,

Q(v,q) =rint(v/q) - q (2)

where 'rint’ denotes a function which rounds a
value to the nearest integer. The amount of noise
thus increases as the distance to the object in-
creases. For example, when an object (ball or
player) is roughly reported at distance 100.0m the
maximum noise is about 10.0m, whereas when the
reported distance is 10.0m the noise can be about
1.0m.

Because of the visual noise introduced by the
soccer server, each agent has a different view of
the environment.

In order to perform sensor fusion we approximate
this noise model with a two-dimensional Gaussian
distribution N(u, CL). u is an vector representing
the calculated position of the object and C7, is an
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Fig. 2. Distribution parameter definitions: mean
(x,y), angle of major axis (), major and
minor standard deviations (uma;j, Omin) and
distance to mean, reprinted from (Stroupe et
al. 2000a).

diagonal matrix that represents the variance along
both axis (see Figure 2 and (3)).
Oma; 0O

Cp=| "% 3

E l: 0 Omin ( )

Omaj is the variance along the axis that points

from the robot towards the observed object, this

value is calculated based on the quantization

made by the soccer server. o,,;, represents the

variance along the perpendicular axis and is based

on the maximum error in angle that an observa-

tion can have, namely 1g5. We used the following
approximations during our tests:

Dist
Omaj = 2+ 10 (4)
m . Dist
Omin == 2+ tan(@) . ? (5)

3.2 Aural Sensor

The aural sensor detects messages which are re-
ceived when another player issues a say command.
The soccer server communication paradigm mod-
els a crowded, low-bandwidth environment in
which the agents from both teams use a single,
unreliable communication channel (Itsuki 2001).
Spoken messages are immediately broadcast to all
nearby players from both teams without percep-
tual delay. The player can hear at most one mes-
sage every second simulation cycle. When multiple
messages arrive during this time, the first one is
chosen according to their order of arrival and the
rest are discarded. Besides this, players also have
to deal with the fact that their communication
range is limited. A spoken message is transmitted
only to players within 50 meters from the speaker.
The maximum length of the message string is
limited to 512 bytes. This enables the players to
communicate their view of the environment to
other teammates. In our case, we communicate
the calculated positions and the associated vari-
ance matrix of all observed objects.

4. FUSING GAUSSIAN DISTRIBUTIONS

In order to use sensor fusion, we must exchange
sensor information, between team members. This
information exchange provides a basis through
which individual sensors can cooperate with each
other, resolve conflicts or disagreements, or com-
plement each other’s view of the environment. Our
goal is to compare the efficiency of two known
sensor fusion methods: the Stroupe et al (Stroupe
et al. 2000a) and the Durrant-Whyte (Durrant-
Whyte 1988) method. The first approach simply
merges the Gaussian distributions of the obser-
vations made by the robot with the Gaussian
distributions of the observations made by other
robots. The second approach takes into account
the last known position of the object and tests if
the readings obtained rom several sensors are close
enough, in order to make the fusion. When this
test fails, no fusion is made and the sensor reading
which has less variance is chosen. The conditions
in which this test fails and succeeds are presented
in Section 5. The remainder of this section pro-
vides the necessary mathematical background to
understand how the merging of Gaussian Distri-
butions is made in both methods.

4.1 Stroupe Method

We represent a single observation of an object as a
two-dimensional Gaussian distribution (Figure 2),
because the environment is two-dimensional and
we don’t want to determine the orientation of the
robot. The center, or mean, of the distribution
is the calculated position of the object and the
standard deviations along the major and minor
axes of the distribution correspond to estimates
of the uncertainty (or noise) in the observation
along each axis. The distribution corresponds to
the conditional probability that the object is in
that location, given the observation.

The diagonal covariance matrix, C, of an ob-
servation relative to coordinates aligned with the
major and minor distribution axes is initially de-
termined from the major and minor axis standard
deviations (0ma; and oy, ) in the local coordinate
frame (designated L).

Since observations may be oriented arbitrarily
with respect to the global coordinate frame (angle
0 relative to global x-axis), they must be trans-
formed to this frame. Rotation of X in (6) by 6
leads to the following relationship.

Ct'=R(-0)"C;'R(-0) = (6)
C = R(-0)TCLR(—0)

where R is an two-dimensional rotation matrix.



Once the observation is transformed to the global
coordinate frame, we combine two individual co-
variance matrices of the same object into a covari-
ance matrix C representing the combined distri-
bution. The derivations are provided with more
detail in the technical report (Stroupe, Martin and
Balch 2000D).

C'=C1— Ci[C + Co] 'Oy (7)
where C; represents the individual covariance
matrix of an object obtained with the robot that is
merging the distributions and Cj is the individual
covariance matrix of the same object obtained
with a second robot.

The mean of the resulting merged distribution,
X', is computed from the individual distribution
means and covariance matrices.

X=X+ C1[Cy + 02]_1(X2 — X1) (8)
where X 1 and X'g are the calculated positions of
the same object made by the two robots.

The principal axis angle of the merged distri-
bution is obtained from the merged covariance
matrix C’ entries:

o-[38 e

5)

Lastly, the resulting major and minor axis stan-
dard deviations are extracted by rotating the
covariance matrix to align with those axes and
reversing (6).

— arctan <

C, = R(O)TC'R() (11)

4.2 Durrant- Whyte Method

Durrant-Whyte considers a sequence of observa-
tions Z = {z1,...,2n}, of a state of the environ-
ment p € P, which are assumed to derive from
a sensor modeled by a contaminated Gaussian
Density, so that the i" observation is given by:

filzilp) = [(1 = N(p,A}) + eN(p, A7)] (12)

with 0.05 < € < 0.1 and A? > A}

It is well known that if the prior distribution
m(p) and the conditional observation distribution
f(z|p) are modeled as independent Gaussian ran-
dom vectors p ~ N(p,Ag) and 21 ~ N(p, A1)
respectively, then the posterior distribution 7(p|z)
after taking a single observation z; can be derived

using Bayes Law and is also jointly Gaussian with
mean vector

= [Ag AT AT 2+ AGTH) (13)

and covariance matrix

A=A AT (14)

This method can be extended for n independent
observations, as explained in (Durrant-Whyte
1988, page 111)

5. THE MULTI-BAYESIAN TEAM

In the Multi-Bayesian system, each team member
individual utility function is given by the posterior
likelihood, for each observation z;:

Uz‘(Pw = 6i(zi)7p) = 7T(p|2i) ~ N(ﬁ7 61)7 (15)

i=1,2

A sensor or team member will be considered ratio-
nal if for each observation z; of some prior feature
0i(z;) € P; it makes the estimate which maximizes
its individual utility w;(p;,0:(2;)) € R. In this
sense, utility is just a metric for constructing a
complete lattice of decisions, allowing any two
decisions to be compared in a common framework.
The team utility function is given by the joint
posterior likelihood:

U(p*(21,22),p) = F(plz1, 22) (16)
= f1(plz1) f2(pl22)

The advantage of considering the team problem
in this framework is that both individual and
team utilities are normalized so that comparisons
can be performed easily, supplying a simple and
transparent interpretation to the group rationality
problem. The team itself will be considered group-
rational if together the team members choose to
estimate p¥ € P (feature of the environment),
which maximizes the joint posterior density.

p* = arg max F(p|z1, 22) (17)

= arg max f(p|Z1)f(p|Z2)

There are 2 possible results for ( 17)

(1) F(p|z1,22) has a unique mode equal to the
estimate p";

(2) F(p|z1,22) is bimodal and no unique group-
rational consensus estimate exists.

If F(p|z1, 22) has a unique mode, as displayed in
Figure 3, it will satisfy:

max F'(p|z1, z2) > max f;(p|z:), (18)
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Fig. 3. Two Bayesian observers with joint poste-
rior likelihood indicating agreement.
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Fig. 4. Two Bayesian observers with joint poste-
rior likelihood indicating disagreement.

i=1,2

Conversely, if F(p|z1, z2) is bimodal, as displayed
in Figure 4, then:

max f;(p[zi) > max F(p|z1, 22), (19)
i=1,2

A rational team member will maximize utility by
choosing to either agree or disagree with the team
consensus. If a team member satisfies (19), then it
will not cooperate with the team estimate. Thus
the decision made by a team member based of its
observations z; is:

P =0(z) = (20)

arg max{ f;(p|z), F(p|z1,22)},i = 1,2

Whether or not the individual team members will
arrive at a consensus, team estimate will depend
on some measure of how much they disagree |z, —
zo|. If z; and z5 are close enough then the posterior
density F(p|z1,22) will be unimodal and satisfy
(18), with the consensus estimate given by (17)
(see Figure 3). As |21 — 22| increases, F'(p|z1, 22)
becomes flatter and eventually bimodal (see Fig-
ure 4). At this point, the joint density will satisfy
(19), no consensus team decision will be reached.

To find the point at which this space is no longer
convex and disagreement occurs, all we need to
ensure is that the second derivative of the function
F(pl|z1, 22) is positive. Differentiating leads to:

o fidp® " fidp* " fifadp dp

= (077 +03%) —[o7%(p— 21) + 03 (p — 22)]

PF_1dfi 1df 2 dfidf

(21)

2

For this to be positive and hence F'(p|z1, z2) to be
convex, we are required to find a consensus over
the feature of the environment p which satisfies.

072 (p = 21) + 052 (p — 22)* (07 % + 05 ) 71(22)

<1
Notice that (22), is a normalized weighted sum,
a scalar equivalent to the Kalman gain matrix.

Then the consensus p which maximizes F' is given
by

(01721 + 05 %22)

(07% +037) )

ﬁ:

Replacing (23) into (22), we obtain

(21 — 22)(21 — 22)
(072 +057)

= Dlg(Zl,Zg) (24)

where D1, < 1. The disagreement measure
D13(z1,29) is called the Mahalanobis distance.

6. FUSIONS COMPARISONS
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Fig. 5. Comparison of the errors between the
fusions, observed data and heard data with
the real value of the X-coordinate

6.1 Ezxperimental Setup

An experiment was conducted on a Simulated
Soccer Team based on (Stone, Veloso and Ri-
ley 1999) and (Reis and Lau 2001), which was
modified to run both the Stroupe and Durrant-
Whyte fusion algorithms. The data fusion was
made based on the data observed and heard by all
team members during a game. Since both players
and ball were moving, their positions were dynam-
ically evolving during the game time. In order to
deal with this, we had to model both the heard
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Fig. 6. Comparison of the errors between the
fusions, observed data and heard data with
the real value of the Y-coordinate

and observed data to reflect the uncertainty of
the objects position based on its distance to the
player who was collecting the data. The goal is to
give a better estimate of all players positions and
the ball position. The results were obtained and
visualized on a 3D graphics client(see 9), which
allowed the visualization of both fusions and of
the raw data from the observed and heard data.

In the Durrant-Whyte fusion algorithm, the deci-
sion process to determine the ball position is made
by first determining if the heard and observed ball
position can be merged through the Mahalanobis

& Goal Kick

Sand Kicksf!

Fig. 9. 3d graphics client showing real ball posi-
tion, heard data, observed data and Stroupe’s
fusion result

distance. If this is possible, the ball position will
be the result of the fusion, otherwise we choose
from the heard and observed data the reading of
smallest variance. The following results were taken
from the goalkeeper of our team, but this is made
for all players. Each player acts as a sensor, taking
observations and reporting them to the other team
members.



6.2 Experimental Results in Simulation League

First we show the positive impact that commu-
nication between agents can cause in an envi-
ronment like the RoboCup simulation league. We
present a brief comparison of the number of known
player positions with and without communication.
When communication is turned off, the player is
able to see in average three to four players on each
simulation cycle. Remember that the time interval
between visual messages is 150ms and simulation
cycles last 100ms. With communication the agents
are capable of hearing in average four player posi-
tions each cycle. On average one of these positions
is related to a previously unknown player. As can
be seen, communication can double the updating
rate of the information leading to more accurate
and up to date information.

Some experimental results are shown graphically
on Figures 5 and 6, which compare the errors
obtained with both fusion methods, observed data
and heard data. As can be seen, the Durrant-
Whyte algorithm has better results than the
Stroupe algorithm, when the sensor data changes
abruptly. In this case the Durrant-Whyte algo-
rithm takes advantage of taking into account the
previous position of the object. This feature will
not allow the fusion result to diverge too much
from the real value, acting as a filter, eliminating
erroneous and spurious sensor data. When the
two sensors diverge a lot the Durrant-Whyte al-
gorithm chooses the best sensor i.e. the one with
smallest variance.

In Figure 7 we represent the trajectory made
by the ball. As we can see the Durrant-Whyte
manages to follow the real value with better
accuracy, converging for the real value faster, and
with little oscillations.

In Figure 8, we display a histogram of the number
of errors of both axis; we can notice that the
Durrant-Whyte method minimizes the error to
the real position, preventing the error to grow to
values too far from the real values. In the extreme
case we only have four occurrences of more than
ten meters errors in the Durrant-Whyte method,
while the Stroupe method has seventeen occur-
rences. Analyzing these four occurrences, we con-
cluded that they occurred in a situation in which
both the heard and observed data were obtained
when both players were too far away from the
object. According to the sensor model of both the
sensors, at such far away distance, the variance
is very large, causing the Gaussians to be very
dilated, and because of this the Durrant-Whyte
managed to fusion the information. However this
problem could be resolved with an higher number
of observations, eliminating these spurious occur-
rences.

6.3 Experimental Results of Middle Size League
Robots

The Durrant-White method was also implemented
on a robot of RoboCup’s middle size league.
The goal was to obtain a better estimate of
the ball position based on observations acquired
from 2 different cameras. The ball was positioned
on several previously known positions along a
straight line and some observations were made
with both cameras.

Figure 10 shows observations made with both
cameras, the real position of the ball and the
estimated position, calculated using the Durrant-
Whyte method. The result obtained with this
approach improves the estimation of the ball po-
sition, converging to the real ball location. As can
be seen, the error of the computed position is the
smallest, it also has fewer oscillations, so it estab-
lishes a better estimate than both observations
independently.
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In figures (11 and 12) we can observe the absolute
error according to the xx Axis and yy Axis.
When the ball is between 0.4 and 1.5 meters
away from the robot the fusion error is very
small around 2 centimeters and in some cases the
error is almost zero. Although in this experiment
we never observed disagreement between both
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cameras , we can easily observe that the fusion
estimate position converges to the observation
of the front camera when the ball is between
0.4 and 1.5 meters away from the robot, when
the ball is farther away it converges to the up
camera observation. This happens because the
sensor models of both cameras are different, since
the front camera give a better estimation when
the ball is closer and the up camera gives a better
estimation when the ball is far.

7. CONCLUSIONS

We presented a comparison of two known methods
to improve position estimates by fusing data from
two or more robot agents. Both approaches are
based on the Bayes Rule and implement a real-
time sensor data fusion on a multi-robot system.

As shown in the paper the Durrant-Whyte ap-
proach is more effective, because it considers the
previous ball position in the estimation of the new
fusion of sensor data. Also, if sensor outputs vary
to a such degree that the Mahalanobis distance
increases and becomes greater than one, then
we have two disagreement sensors information.
In this case the Durrant-Whyte method chooses
the sensor output with the smallest reading error.
This will eliminate any erroneous and spurious
data, that might appear, giving a much more
accurate view of the world and of its state. These
are the reasons why we chose to use this method
in the real robots.

Stroupe’s method fuses directly two Gaussian
distributions, but it has the problem that if one of
the sensor observations has errors associated with
it, the result will diverge from the real value, due
to a sensor anomaly, error reading data or bad
sensor calibration.

In conclusion, the Durrant-Whyte fusion algo-
rithm is better to determine the ball position than
the Stroupe algorithm, and it should be imple-
mented whenever possible do determine the ball
position or the positions of other objects. The
only limitation of the Simulated League is the
fact that since each player acts as an sensor, they
cannot communicate in real time all at the same
time, in order share their information of the state
of the environment. So rules must be created in
order to give preference to those sensors whose
information is more relevant for the environment
features detection.
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