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Abstract: Object tracking consists of estimating the trajectories and behaviour of objects,
which will obviously play a role of the utmost importance in the future development of
collision avoidance algorithms. This work tackles a group of modules that enlightens us
on the positions and velocities of existing objects, in the visualisation area of a Laser
Measurement System (LMS), using their scans. Scan processing is possible thanks to
several modules (Segmentation, Static LMS and Moving LMS), which allow the tracking
of several visible objects with the LMS, in a nutshell estimating their positions and
velocities according to the same LMS, that can move and rotate.
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1. INTRODUCTION

The matter concerning the tracking of objects and
people assumes a paramount role in the
understanding of the environment involving the
vehicle (in order to control it) resulting in the safety
of the vehicle itself, its passengers and other road
users.

Research has been made in multi-objects tracking. In
(Fod, et al., 2002) object tracking with a static sensor
is performed. To improve tracking it’s useful to use
cameras to determine the position and orientation of
objects (Patric and Christensen, 2001). Tracking with
a sensor in movement requires a new approach
towards the issue stated in (Dietmayer, et al., 2001;
Sparbert, et al., 2001; Fuerstenberg and Willhoeft,
2001; Fuerstenberg, et al., 2002).

This paper describes a tracking system constituted by
the following modules: segmentation, static LMS
and moving LMS. This system allows estimating the
position and velocity of existing objects in the
environment thanks to a number of scans provided
by a laser measurement system (LMS).

2. SEGMENTATION

The goal here is to identify the limits of possible
existing objects detected by the LMS and if so, to

filter and provide additional information on the
object in analysis. The main idea is to subdivide the
readings obtained in each scan, into small sets of
neighbouring points (segments), taking into account
the proximity between two consecutive points of the
scan.

A segment is, hence, a set of measurement values
(points of the scan) close enough to each other that,
due to their proximity, probably belong to the same
object.

Segmentation criterion (based on (Dietmayer, et al.,
2001)): two consecutive points, distant from the
LMS, r, and ry, belong to the same segment as long
as the distance between them fulfils the following
expression:
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where Iyin = min{ r, I, } , and @ is the angular
resolution of the LMS. Angle 3 and constant C, are
parameters of segmentation sensibility refinement
(tuning). B was introduced to reduce the dependence
of the segmentation with respect to the distance
between the LMS and the object.
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Fig. 1. Illustration of the segmentation algorithm.
Set A - Set of values that the farthest point can
take to belong to the same segment as the nearest
point P .

Fig. 2. Different B angles. (a) B too short — points of
the object face don’t belong to the same segment.
(b) B too high — two points detected from
different objects belong to the same segment.
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Fig. 3. Different points localization in a segment. O
is the medium angle that correspond to the
medium point.

If Cy=0, then B gives the maximum absolute
inclination with respect to the perpendicular to the
dashed line m (see Fig. 1), that an object’s face can
have to belong to a segment. m is the median line
between the two consecutive LMS beams.

If ryin is short the set of points defined by the 3 angle
is small and if it is high, the set of points defined by
the B angle is high. If B is too short, some objects
will not be detected (see Fig. 2-a). If B is too high,
then a segment can represent more than one object
(see Fig 2-b).

After the subdivision of each scan in segments, a
selection of several points of the segment (see Fig. 3)
and the computation of the visible dimensions of the
object take place.

3. TRACKING WITH SATIC LMS

3.1 Reference point choice

In order to retrieve a reliable tracking of the object, it
is vital to define a certain point which can be easily
identifiable in successive scans, corresponding to the
same point in the object — this is a so called reference
point. Through segmentation, the information
regarding several points of each segment (farthest
right, farthest left, minimum and angular medium)
(Fig. 3) is gathered and it must be guaranteed that the
movement of the reference point is compatible with,
and adequately represents, the object’s movement.

The minimum point would be in principle a good
candidate to represent the detected object motion
behaviour, because it is always visible in the object.
But two problems can arise (Fig.4):
1)-In particular situations of the object and of its
faces position with respect to the LMS beams, the
minimum point changes in the object face;
2)-The detected minimum point may not coincide
with the real minimum point of the object, due to
the existence of an angular aperture between
consecutive beams of the LMS (see Fig.3).

Trajectory of the
minimum point given
by the segmentation

Real trajectory of
the minimum point
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Fig. 4. Consequence of the existence of an angular
aperture between beams, in the case of a circular
object.
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Fig. 5. Virtual displacement (Ax) of the medium
point detected due to a rotational movement of
the rectangular object.

The medium point corresponds to the medium angle
of the detected object angular range (Fig.3). This
point is the one that better behaves in conformity
with the movement of the object. However this point
also presents the same problems as the minimum
point. In particular, if a rectangular object describes a
little rotation, the detected medium point changes in
the object (Fig. 5).

Taking into account the minimum and medium point
characteristics, a virtual point has been defined (x
coordinate of the minimum point, y coordinate of the
medium point). For the example illustrated in Fig. 5,
the virtual point is the one that better represents the
movement of the object (see Fig. 6). This is the
segment reference point used in the objects tracking.

3.2 Segment-object pair identification

It is necessary to identify the segment-object pair in
an unquestionable fashion taking into account the
segment reference point.
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Fig. 6. Virtual point (x coordinate of the minimum
point, y coordinate of the medium point).
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Fig. 7. Identification of the segment-object pair in
polar coordinates. The interest region is a circle
with a given radius R; and centred in S(k).

The estimated position (Syf) of an object reference
point at the current time instant kK must be obtained
(for this purpose a Kalman filter is used as described
in Sec. 3.3).

Now the estimated position of each object and the
segments’ reference points of the present scan are
known. Based on the Si¢(k) of each segment, an
interest region is defined, in which the search of
existing objects will be performed, searching for the
match of segment S.(k) (see Fig. 7). Suppose that
several potential objects are found. The one with
most similar dimensions (defined by the points:
farthest right, angular minimum and farthest left) to
the segment (object boundary detected) in
consideration is chosen.

A problem arises when object reference point
occlusion occur. To detect situations of object
occlusion, it is determined if the object reference
point will be behind of any other or out of the
measurement zone of the LMS in the next scan. In
such situation two options are possible: 1) object
velocity update will be frozen, or 2) at least an
indication of how velocity reliability is given.

3.3 Object kinematics model

This subsection describes the velocity estimate. To
perform this estimate, a Kalman Filter containing a
kinematics model of the object (white noise
acceleration model (Kohler, 1997)) is used. The
motion is considered to be the superposition of an
ideal basic motion with, for example, constant
velocity and white noise. The white noise illustrates
the acceleration that is time varying. The discrete
time state equation of this kinematics model with
sampling period h (h=t,.,-t,) is given by (2)
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where Sy.; and Vi.g are the position and the velocity,
respectively, in the instant k+1, wy is the vector
(considered white noise, in this model) that
represents stochastic data with respect to the
acceleration, Yy is the output of the model and finally,
ex is the observation error. The model described
above is applied independently to the x and y
coordinates, with separated Kalman Filters speeding
the calculus. A special attention was drawn to the
process and noise covariance matrices values for use
in the Kalman filter. The filter covariance matrices
are chosen similarly to (Kohler, 1997). The
covariance matrix Qy of process noise error is
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where apa is the spectral amplitude of the white
noise and At is the sampling period. Since the
acceleration is identified as white noise, amay is the
maximum amplitude of the object’s predictable
acceleration. This matrix may be applied for any
filter models with translational motion of constant
velocity and random acceleration. If Q is high (Q
with high values), it means that the system model is
able to follow high changes. Objects with different
kinematics properties are modelled using different
values for amay.

Since the model described by (2) is applied
independently to the x and y dimensions, the two
involved measurement error covariances are the

following scalars: R, =@, and R, :aezy.

Apart from the LMS sensor range measurement
. ;2 .

error, the variances (o e O e,y) also incorporate the

error due to the angular aperture between beams (see

Fig. 4).

The initial Covariance Matrix Py of the estimation
error is:
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where 023,S is the variance of the position estimation
error; 023,\, and 02\,,S are the cross variances of the
position and velocity estimation errors; 02\,,\, is the
variance of the velocity estimation error.
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Fig. 8. Referential transformation between two
reference frames which represent two different

positions of the LMS.
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4. TRACKING WITH A MOVING LMS

Since the LMS is to be used in an automobile vehicle
that may rotate and/or translate, it is imperative to
consider the movement of the LMS in the tracking of
the objects. In fact when performing a Kalman
filtering update cycle all the variables involved
(including present and next state) must be expressed
in the same reference frame. This problem can be
solved using the transformation matrix that relates
the present state variables (expressed in frame {B})
with the previous state variables (expressed in frame
{A}), as depicted in Fig. 8.

So, if the coordinates (*x,"y)of a point in the frame

{A}, are known, then, its coordinates (°®x,%y) in
frame {B} are given as follows:
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where vector (AX,Ay)represents the position of
frame {B} with respect to, and expressed in, frame
{A}. O is the angle of rotation from frame {A} to
frame {B}. The velocities will have to be projected
to this new system of axes too:
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4.1. Data flow

Several modules constitute the tracking architecture
each one with an associated model. The block
diagram in Fig. 9 describes the relation between the
several models.
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Fig. 9. System’s architecture

The vehicle model is determined by its odometry in
combination with the position in which the sensor is
placed. The computed data is used in the other 2
models in order to carry out the tracking. The sensor
model intends to identify the configurations of the
sensor itself and by doing so, tuning the
segmentation and filter algorithms. Finally, the
object model is designed to explain the generic
characteristics of the target objects (maximum
velocity, maximum acceleration, dimensions) so as
to refine the tracking algorithm.

5. EXPERIMENTS

Experimental results regarding two different types of
environment are reported: a real experiment and a
simulation using Matlab. In the real life environment
the algorithm’s performance was tested with a static
LMS providing scans at a rate of approximately 5

Fig. 10. Picture of the experimental environment
with the scout robot carrying a white cardboard
box.

The following objects were used: cardboard boxes,
placards, a SCOUT robot, etc. The knowledge of all
the objects’ behaviour, including the LMS
observation model, made possible the programming
of the experiment with the moving LMS in
simulation. In both experiments, the angular
resolution of the LMS was configured to 0.5° and the
reach to 8 m (indoor).

5.1. Real environment experiments

As an example is presented a real experimental
environment, in which it is intended to track a person
and a cardboard box placed on top of the Scout robot
(Fig. 10). The following values have been used in the
experiment:
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The tracking algorithm was applied, taking into
account the scans of the environment. Fig. 11
presents the velocity vectors of the two tracked
objects, the identifying numbers of the objects (2 is a
person and 3 is a cardboard box placed on the Scout
robot) associated to the magnitude of the velocity in
km/h.

Fig. 12 compares the real velocity with the estimated

velocity of the cardboard box using respectively, the
Scout robot’s odometric data and the tracking values.
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Fig. 11. Graph regarding a specific instant of the
experience. We can observe that the object n°3
(cardboard box) moves at 0.937 m/s in the
direction of the third quadrant; object n°2
(person) moves at 0.833 m/s in the y-axis
direction. The dashed line represents the
trajectory followed by the cardboard box.
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Fig. 12. Graphs that compare the absolute values of
the real (Vo) and estimated (V) velocities by
the tracking algorithm, as well as respective
orientations of the velocity vectors.

If the magnitude of the real velocity is zero, the
orientation of the wvelocity vector is also zero.
Between time intervals 47 and 57, an error occurs
because of the following situation: when the object
moves close to the LMS, there is a face that becomes
temporarily invisible producing an oscillation on the
reference point. The estimate of the velocity vector
orientation does not have any meaning when the
velocity is zero (or close to zero) as we can see near
the time instant 10.

5.2. Simulated environment

The simulator used allows the creation of vehicles of
various forms and dimension and the programming
of its movements. It also includes the possibility of
using a laser sensor similar to the LMS. This
subsection presents a simulating experience, where
the vehicle that carries the LMS (A) moves at the
constant velocity of 8.333 m/s (30 km/h) from left to
right and another vehicle (B) moves in the opposite
direction with the same velocity. Using the scans of
the LMS taken from the Simulator, the tracking
algorithm was applied. On the right hand side of Fig.
13, the objects detected by the LMS, with their
respective velocities are represented. Object B is the
car moving in the opposite direction. Objects U and
L are the upper and lower walls respectively. Using
the tracking algorithm presented in this paper the
velocity of vehicle B is estimated with reasonable
accuracy.
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Fig. 13. Scenario with the crossing of vehicles A and
B (black rectangle). The semicircle represents
the area scanned by the LMS.

Fig. 14 illustrates a temporal evolution composed of
time steps 1, 5, and 9 of a similar tracking
experiment with the vehicle carrying the LMS
moving in the opposite direction of a car (rectangle
signalised as 5), both with a velocity of 30 Km/h. In
step 1 the vehicle is detected for the first time. In
step 5 the estimated vehicle velocity is 27 Km/h. Step
9 represents a situation where the tracked vehicle is
still in the LMS field of view, and the velocity
estimate is 31 Km/h.
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Fig . 14. A temporal evolution composed of time
steps 1, 5, and 9 of a tracking experiment.
Scenario with the crossing of two vehicles.



6. SUMMARY AND CONCLUSIONS

An object-tracking algorithm was developed in
which the sensor itself (LMS) can be placed on a
moving vehicle. It includes a kinematics model that
can be adapted to the type of object detected. In
order to do this, a more robust object classification is
paramount. Previous knowledge on the type of the
environment in addition to the increase of the rate of
data acquisition are some of the developments being
carried out which can improve the tracking system
performance.
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